Characterization of insulin-stimulated microtubule-associated protein kinase. Rapid isolation and stabilization of a novel serine/threonine kinase from 3T3-L1 cells.

نویسندگان

  • L B Ray
  • T W Sturgill
چکیده

A protein kinase, termed microtubule-associated protein (MAP) kinase, which phosphorylates microtubule-associated protein 2 (MAP-2) in vitro and is stimulated 1.5-3-fold in extracts from insulin-treated 3T3-L1 cells has been identified (Ray, L.B., and Sturgill, T.W. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 1502-1506). Here, we describe chromatographic properties of MAP kinase and provide biochemical characterization of the partially purified enzyme. Isolation of the enzyme is facilitated by its unusually high affinity for hydrophobic interaction chromatography matrices. The molecular weight of the partially purified enzyme was determined to be 35,000 by gel filtration chromatography and 37,000 by glycerol gradient centrifugation. MAP kinase activity of chromatographic fractions correlated precisely with the presence of a 40-kDa phosphoprotein detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. MAP kinase has a Km of 7 microM for ATP and does not utilize GTP. Acetyl-CoA carboxylase, ATP citrate-lyase, casein, histones, phosvitin, protamine, and ribosomal protein S6 were all poor substrates relative to MAP-2. The enzyme is inhibited by fluoride and beta-glycerol phosphate but not by heparin. These properties of MAP kinase distinguish it from protein kinases previously described in the literature.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rapid stimulation by insulin of a serine/threonine kinase in 3T3-L1 adipocytes that phosphorylates microtubule-associated protein 2 in vitro.

Insulin treatment (Kact, 5 X 10(-9) M) of serum-starved 3T3-L1 adipocytes stimulates a soluble serine/threonine kinase that catalyzes phosphorylation of microtubule-associated protein 2 (MAP-2) in vitro. Maximal activation of MAP-2 kinase activity by 80 nM insulin was observed after 10 min of hormonal stimulation, prior to maximal stimulation of S6 kinase activity (20 min). The insulin-stimulat...

متن کامل

Insulin-stimulated microtubule-associated protein kinase is phosphorylated on tyrosine and threonine in vivo.

Exposure of 3T3-L1 cells to insulin stimulates a soluble, serine(threonine)-specific protein kinase that phosphorylates microtubule-associated protein 2 (MAP-2) in vitro. The enzyme, termed MAP kinase, was isolated from insulin-treated or control cells radiolabeled with 32Pi. A 40-kDa phosphoprotein was found to elute in exact correspondence with enzymatic activity during hydrophobic interactio...

متن کامل

Identification of multiple epidermal growth factor-stimulated protein serine/threonine kinases from Swiss 3T3 cells.

Growth factor activation of serine/threonine protein kinases was studied by treating quiescent Swiss 3T3 cells with epidermal growth factor (EGF) and examining cytosolic extracts for protein kinase activity under conditions inhibitory to calcium- and cyclic nucleotide-dependent kinases. Cytosolic extracts of cells stimulated for 5 min were fractionated by Mono Q fast protein liquid chromatograp...

متن کامل

Requirement for activation of the serine-threonine kinase Akt (protein kinase B) in insulin stimulation of protein synthesis but not of glucose transport.

A wide variety of biological activities including the major metabolic actions of insulin is regulated by phosphatidylinositol (PI) 3-kinase. However, the downstream effectors of the various signaling pathways that emanate from PI 3-kinase remain unclear. Akt (protein kinase B), a serine-threonine kinase with a pleckstrin homology domain, is thought to be one such downstream effector. A mutant A...

متن کامل

Persistent activation of phosphatidylinositol 3-kinase causes insulin resistance due to accelerated insulin-induced insulin receptor substrate-1 degradation in 3T3-L1 adipocytes.

Recently, we have reported that the overexpression of a membrane-targeted phosphatidylinositol (PI) 3-kinase (p110CAAX) stimulated p70S6 kinase, Akt, glucose transport, and Ras activation in the absence of insulin but inhibited insulin-stimulated glycogen synthase activation and MAP kinase phosphorylation in 3T3-L1 adipocytes. To investigate the mechanism of p110CAAX-induced cellular insulin re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 263 25  شماره 

صفحات  -

تاریخ انتشار 1988